lunes, 21 de marzo de 2016

UNIDAD DIDÁCTICA: Resolver ecuaciones de primer grado

Motivación
Una ecuación de primer grado es una igualdad entre dos expresiones algebraicas con la variable x sólo con potencia uno. La solución de la ecuación es el valor de x que hace que la igualdad sea cierta.

Si digo, fui a la tienda de ropa, me compré tres pantalones de igual precio y una falda que cuesta 15 euros. No recuerdo el precio de cada pantalón, pero sí recuerdo que pagué con un billete de 50 euros y me devolvieron 5 euros, ¿puedo deducir el precio de cada pantalón?

Esto es una ecuación porque plantea una igualdad, el precio detallado de las prendas y el pago final con dinero en mano. La incógnita es el precio de un pantalón. Es de primer grado puesto que es el precio tal cual, no es al cuadrado ni al cubo. Las expresiones algebraicas que se igualan son: tres por el precio de un pantalón más 15 euros del precio de la falda (3x+15); el billete de 50 euros menos la devolución de 5 euros (50-5). La ecuación es 3x+15=50-5

La solución se puede deducir llevando las cuentas mentalmente: El pago fue de 50-5=45 euros. Si descontamos el precio de la falda se tiene lo que costaron los tres pantalones, 45-15=30 euros, y como eran tres, cada uno costó 30/3=10 euros. Se puede comprobar la solución: 3·10+15=50-5.

A veces las expresiones algebraicas pueden ser más complejas y no se puede hacer mentalmente, por lo que es necesario llevar al papel la ecuación para, con ayuda del cálculo algebraico, obtener la solución.

Experimentación
Cuando se plantea una ecuación se hace llevando una contabilidad donde alguna partida no sabemos su valor y se deja indicada. La resolución de la ecuación sería deshacer la contabilidad, poco a poco, hasta llegar a aislar esa partida desconocida.

Veamos un ejemplo:
Un mago le pide a un niño que piense un número entre 0 y 9. Y le dice que lo va a adivinar.
   a) Para el mago ese número se llama x.
A continuación le dice al niño que le sume 3 a ese número, en su cabeza.
   b) Para el mago, que lleva la contabilidad, van x+3.
Ahora le dice al niño que el resultado lo multiplique por 2.
   c) Para el mago van 2(x+3).
Ahora le dice que al resultado le sume 5.
  d) Para el mago van 2(x+3)+5.
Finalmente le pide el resultado al niño, y este le dice que sus cuentas dan 13.
En primer lugar la ecuación a resolver es: 2(x+3)+5=13
La solución la obtiene el mago deshaciendo el camino. De atrás para adelante.
El último paso fue sumar 5, pues ahora resta 5
  d) Para el mago su contabilidad vuelve a 2(x+3) y para el niño a 13-5=8
El penúltimo paso fue multiplicar por 2, pues ahora hay que dividir por 2.
  c) Para el mago le queda x+3, para el niño 8/2=4
En el anterior paso el mago pidió sumar 3, ahora hay que restar 3.
  b) Para el mago le queda x, y para el niño 4-3=1
Ya solo queda lo que dijo el mago, que pensara un número
  a) Para el mago era x, para el niño el 1
La solución es que el niño pensó en el 1

Conceptualización
Una ecuación tiene dos miembros, la expresión de la izquierda de la igualdad, el primer miembro, y la expresión de la derecha de la igualdad, el segundo miembro.
MIEMBRO 1= MIEMBRO 2
Durante la resolución se hacen operaciones sobre la ecuación de forma que se pasa de una ecuación a otra, equivalente, que mantiene la solución, pero más cercana a la última, x=a.
MIEMBRO' 1= MIEMBRO' 2
MIEMBRO'' 1= MIEMBRO '' 2
..................................................
x=a
Las operaciones permitidas que simplifican y mantienen la solución son:
1) Se pueden hacer las operaciones ordinarias siguiendo la jerarquía en cada miembro de la ecuación para simplificarlos.
2) Se puede sumar o restar el mismo número en ambos miembros de la ecuación.
3) Se puede multiplicar o dividir por el mismo número en ambos miembros de la ecuación (no se puede dividir por 0).

Por ejemplo:
Sea la ecuación 3(x-3)-7-x=4
Primero se quita el paréntesis (1):
3x-9-7-x=4
Ahora se simplifica el primer miembro (1)
2x-16=4
Ahora se suma 16 en ambos miembros (2)
2x=20
Ahora se divide por 2 ambos miembros (3)
x=10
Como la solución se mantiene en todos los pasos, resulta que x=10 es la solución del último paso, luego es la misma que la de la ecuación.

Procesamiento
Puede ocurrir que haya expresiones con x en ambos miembros. Las operaciones que se hacen en las ecuaciones para transformarlas en ecuaciones equivalentes más simples van aislando la x en el primer miembro y dejando un número en el segundo. La táctica es dejar los términos con x agrupados en el primer miembro y los términos numéricos en el segundo.

Por ejemplo,:
Sea la ecuación: 5(2x+6)=-2(x-3)+72
La primera tarea será quitar todos los paréntesis aplicando la propiedad distributiva:
10x+30=-2x+6+72
La siguiente tarea es restar 30. Ya se ve que desaparece el 30 del primer miembro y lo que aparece es -30 en el segundo. Es como si el +30 del primer miembro se desplazara al segundo como -30.
10x=-2x+72-30+6
Se simplifica el segundo miembro:
10x=-2x+48
Para pasar el -2x al primer miembro, se hace como con los números, se suma en ambos miembros +2x, con lo que desaparece el -2x del segundo miembro y aparece en el primero. Hay que pasar juntos el -2 y la x, no se puede pasar el-2 dividiendo porque el -2x está en una expresión que suma al 48.
10x+2x=48
Se agrupan las x en el primer miembro:
12x=48
Ahora hay que dividir por 12 ambos miembros, pero es como si el 12 que está en el primer miembro multiplicando pasara dividiendo al segundo.
x=48/12
Simplificando el segundo:
x=4

Entonces se pueden hacer cambios en las transformaciones permitidas sobre las ecuaciones:
2') Si un número o expresión algebraica está sumando o restando en un miembro puede pasar al otro cambiado de signo.
3') Si un número o expresión algebraica (no cero) está en un miembro multiplicando o dividiendo y no hay términos sumando o restando, puede pasar al otro dividiendo o multiplicando, respectivamente.

Mecanización
De forma automática hay que resolver las ecuaciones de primer grado.

Por ejemplo, resolver 3(2x+2)-4=5(x+2)+2
Primero, quitar paréntesis: 6x+6-4=5x+10+2
Segundo, pasar los términos o agrupar los semejantes. Si se toma la segunda opción queda, 6x+2=5x+12
Tercero, pasar los terminos en x al primer miembro y los otros al segundo, cambiando los signos:
6x-5x=12-2
Cuarto, agrupar términos semejantes: x=10

En este caso ya se llega a la solución.

Otro ejemplo, resolver 2(x+3)-4=2x+3
Primero, quitar paréntesis: 2x+6-4=2x+3
Segundo, agrupar términos semejantes: 2x+2=2x+3
pasar los términos en x al primer miembro y los otros al segundo, cambiando los signos:
2x-2x=3-6+4
Tercero, agrupar: 0x=1
En este caso queda 0=1, lo cual es absurdo.

La última igualdad es falsa, luego todas las igualdades anteriores lo son. La ecuación es la primera igualdad y es falsa para cualquier valor de x, eso significa que no hay ningún valor que haga

Otro ejemplo, resolver 4(x+2)-2=6x-2(x-3)
4x+8-2=6x-2x+6
4x+6=4x+6
4x-4x=6-6
0x=0
0=0

Esto significa que la ultima igualdad es siempre cierta independiente de la x, entonces la primera igualdad se cumple siempre par todo valor de x. La ecuación es una identidad y tiene infinitas soluciones.

Consolidación
De esta forma ya se puede resolver cualquier ecuación de primer grado.
Puede tener una, ninguna o infinitas soluciones, la forma de concluir es llegando a una ecuación equivalente de la forma x=a, 0=a ó 0=0, respectivamente.
  • Se empieza por eliminar paréntesis,
  • se agrupan términos semejantes que se estén sumando o restando,
  • se pasan los términos en x al primer miembro y los que no la tienen al segundo, cambiando el signo
  • se vuelven a agrupar términos semejantes,
  • y se despeja x pasando su coeficiente al otro lado dividiendo si está multiplicando o multiplicando si está dividiendo.
  • Si la última ecuación es una de los tres casos anteriores se concluye como se indica.

Ejemplo: -5(x+6)+4(x-2)=2x+1
-5x-30+4x-8=2x+1
-x-38=2x+1
-x-2x=38+1
-3x=39
x=39/-3
x=-13
solución única

Evaluación
Una niña tiene 4 euros, cada semana recibe 5 euros de paga y gasta una cantidad fija x. Quiere ahorrar para comprar un juguete que cuesta 16 euros. ¿Cuánto puede gastar si quiere tener el dinero dentro de 6 semanas?
Variable: x es lo que gasta fijo por semana
Ecuación: 4+6(5-x)=16
Resolución:
4+30-6x=16
34-6x=16
-6x=16-34
-6x=-18
x=-18/(-6)
x=3 euros semanales

Supongamos que quiere tener el dinero en 2 semanas
Ecuación: 4+2(5-x)=16
Resolución:
4+10-2x=16
14-2x=16
-2x=16-14
-2x=2
x=2/(-2)
x=-1
en lugar de gastar tiene que ingresar 1 euros a la semana aparte de los 5 euros

Supongamos que quiere gastar los 5 euros, ¿cuántas semanas tiene que estar ahorrando?
Variable: y es el número de semanas
Ecuación: 4+y(5-5)=16
4+0y=16
0y=12
0=12
no hay solución

Supongamos que sólo recibe de paga 2 euros
Variable: x es lo que gasta fijo por semana
Ecuación: 4+6(2-x)=16
4+12-6x=16
16-6x=16
-6x=-16+16
-6x=0
x=0/(-6)
x=0
no puede gastar nada

Supongamos que lo que gasta semanalmente lo puede volver a ahorrar porque se lo financian
Ecuación: 4+6(5-x)+6x=16
4+30-6x+6x=16
34+0x=16
0x=16-34
0x=-18
0=-18
no hay solución
En 6 semanas tiene 34 euros, no 16. Evidentemente junta más dinero de lo que necesita, lo que dice la ecuación es que exactamente 16 euros no los puede conseguir con este plan.

No hay comentarios: